
RV 2005 Preliminary Version

Concurrent Java Test Generation as a Search
Problem

Yaniv Eytani 1

Computer Science Dept., University of Haifa

Abstract

A Random test generator generates executable tests together with their expected re-
sults. In the form of a noise-maker, it seeds the program with conditional scheduling
primitives (such as yield()) that may cause context switches. As a result different
interleavings are potentially produced in different executions of the program. De-
termining a-priori the set of seeded locations required for a bug to manifest itself is
rarely possible.

This work proposes to reformulate random test generation of concurrent Java
programs as a search problem. Hence, it allows applying a set of well known search
techniques from the domain of AI to the input space of the test generator. By
iteratively refining the input parameters fed to the test generator, the search process
creates testing scenarios (i.e. interleavings) that maximizes predefined objective
functions. We develop geneticFinder, a noise-maker that uses a genetic algorithm
as a search method. We demonstrate our approach by maximizing two objective
functions: the high manifestation rate of concurrent bugs and the exporting of a
high degree of debugging information to the user. Experimental results show our
approach is effective.

1 Introduction

The increasing popularity of concurrent programming on the Internet as well
as on the server side has brought the issue of concurrent defect analysis to
the forefront. Java’s scheduling mechanism introduces non determinism to
the program’s executions (each execution is called an interleaving). The set
of possible interleavings is huge, and it is not practical to try them all. Only
a few of these interleavings actually produce concurrent faults. Thus, the
probability of producing a concurrent fault is very low. As a result, defects

1 The author gratefully acknowledges the support of the Caesarea Edmond Ben-
jamin the Rothschild Foundation Institute for Interdisciplinary Applications of Com-
puter Science, at the University of Haifa. Email: ieytani@cs.haifa.ac.il Web:
http://cs.haifa.ac.il/˜ieytani/

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Eytani

such as unintentional race conditions and deadlocks are difficult and expensive
to uncover and analyze and often escape to the field.

A related problem is that the JVM scheduler is usually deterministic; ex-
ecuting the same tests many times will not help, because the same set of
interleavings will be created. This is true for simple and average complexity
tests re-executed in a similar environment, regardless of the environment. The
problem of testing multi-threaded programs is compounded by the fact that
tests that reveal a concurrent fault in the field or in a stress test are usually
long and run under different environmental conditions. As a result, such tests
are not necessarily repeatable, and when a fault is detected, much effort must
be invested to recreate the conditions under which it occurred.

In previous work, we developed the raceFinder tool, a heuristic noise-
maker for Java that was found effective in uncovering concurrent bugs [2].
RaceFinder seeds the program with conditional synchronization primitives
that potentially change the runtime interleavings the JVM scheduler produces
and increases the probability that concurrent bugs manifest. This capability,
however, strongly depends on raceFinder’s set of inputs (called a “configura-
tion”). A configuration is a subset of the program locations and associated
parameters that determine the amount of scheduling noise (seeded context
switches and delays) to be applied. The number of possible configurations
can be very large and only a small subset may uncover bugs. Some config-
urations are even not feasible for testing. Different programs usually have
different sets of configurations that are effective for the purpose of finding
bugs and determining them a-priori is rarely possible.

This work proposes to reformulate random test generation of concurrent
Java programs (in the form of noise-making [5]) as a search problem. A ran-
dom test generator generates executable tests together with their expected
results. It receives as input test directives or specifications that tell it what
kinds of tests are required. Treating test generation as a search problem al-
lows applying a set of well known search techniques from the AI domain to the
input space of the generator. Changing the inputs of the generator changes its
output, namely the conditional scheduling noise inserted to the program’s ex-
ecution and potentially changes the interleaving generated. Thus, the search
process iteratively tunes the inputs to create testing scenarios (i.e. interleav-
ings) that maximize predefined objectives functions over a single execution (or
possibly a group of executions).

To demonstrate our approach we developed a new variant of the raceFinder
tool (called geneticFinder), based on the use of a genetic algorithm as the
search method. Genetic algorithms [13] (GAs hereafter) search for optimal or
near optimal solutions by sampling the search space at random and creating
a set of possible solutions (chromosomes) called “population”. Each chromo-
some has an assigned fitness. These chromosomes undergo either recombina-
tion, mutation or survive and are chosen with a probability that depends on
their fitness level to evolve into a new generation of solutions.

2

Eytani

GeneticFinder currently aims at maximizing two predefined objective func-
tions: (1) achieving a high probability that the bug manifests in every execu-
tion of the program, and (2) exporting a high amount of debugging informa-
tion to the user. The latter is achieved by applying high degree of scheduling
noise on a minimal set of variables and program locations. Both objective
functions correlate well (this experience is drawn from [2][6]) and we refer to
configurations that maximize both functions as effective configurations.

Previous works were aimed specifically at either manifesting bugs [2] or
achieving coverage objectives for the purpose of creating effective regression
suites [10]. This work generalizes this notion by providing the flexibility to
define various new objective functions (or a weighted combination of these
functions). In addition, our framework could easily interact with other testing
tools from different paradigms such as static analysis [4], race detection [1][16]
and model checking [18]. One can use information from either static analysis
or dynamic analysis (such as race detection) as starting points to the search
process. Other possibility is to use the noise-maker to provoke potential in-
correct behavior of race conditions that are bugs (as opposed to benign races).
By defining the appropriate objective functions, the generator’s output could
be used to guide run-time analysis of tools such as a model checker (as sug-
gested in [14]). The results of the model checker analysis can then be fed back
to the noise-maker and initiate another iteration of the search process. We
intend to explore such possibilities in future work.

We experimented with a set of programs taken from a publicly available
benchmark [7]. Each program’s bugs are documented, and so we could evalu-
ate our approach to show it is effective.

The paper is organized as follows: Section 2 discusses concurrent test
generation with the raceFinder tool. Section 3 formulates noise-making as a
search problem. Section 4 provides the implementation details of the genetic
variant of raceFinder. Section 5 presents experimental results and analysis.
Section 6 lists our conclusions and future work.

2 Concurrent test generation with raceFinder

When a concurrent bug manifests either in a small number of the interleavings
or at ones that are not produced under the scheduling policy of the JVM, it
may occur with a very low probability or not at all. To increase the probability
such bugs manifest we had previously developed the raceFinder tool [2], a
random test generator for concurrent Java programs.

In a typical raceFinder user scenario, a given functional test t is repeat-
edly executed against the program P, when the latter is executed. In each
execution the program is seeded with conditional synchronization primitives
(such as yield()) at various program locations. The seeded primitives may
cause context switches, and as a result potentially different interleavings are
produced. This process creates irregular testing scenarios and increases the

3

Eytani

probability that concurrent bugs are uncovered (elaborated in [2][5][17]).

RaceFinder performs a heuristic search based on a two-level scheme. The
first level determines, for each concurrent event (program locations that access
shared variables, referred to as events [2]), whether or not to force context
switches using the seeded primitives. At the second level, different seeded
primitives are applied to the chosen concurrent events. Probabilistic parame-
ters control the number of context switches and delays (referred to as noise or
scheduling noise) introduced at run-time.

2.1 Probabilistic models for noise-making

Previous work [2] shows that the policy of applying noise to a single variable
related to the concurrent bug significantly increases the probability that the
bug manifests itself in comparison to randomly executing context switches over
all of the program’s events (referred to as white-noise). To justify seeding a
subset of the program’s events, recent work [6] classifies the program’s events
as good, bad and neutral, based on the effect of applying a context switch at
each event (before or after it is executed). Other types of conditional seeding
are possible and will be discussed in the following section. We briefly motivate
the proposed classification in the next paragraphs.

Taxonomy of concurrent bugs [8] [15] and research of data races [16] and
atomicity [12][19] indicate that a concurrent bug manifests when a sequence
of events occur in a specific order. This sequence usually involves events
from different threads. Hence, a context switch is required after (or before)
some of events in the sequence execute, for the bug to manifest. We refer
to such events as good events. Experimental studies show that having too
many context switches tends to mask the concurrent bug [2]. Hence, for the
sequence to expose the concurrent bug, it is best that no context switches
occur before or after most other events in the sequence. We refer to latter as
bad events. Thus, for a given concurrent bug, we distinguish between three
types of events:

• Good events – events in which a context switch increases the probability
that a concurrent bug manifests.

• Bad events – events in which a context switch decreases the probability that
a concurrent bug manifests.

• Neutral events – events in which a context switch does not impact the
probability that a concurrent bug manifests.

In the following example

Thread 1 Thread 2

(1)If(x! = 0){ (3)x = 1;
(2)y = 1/x; (4)x = 0;
} (5)z = 8

4

Eytani

Events (1) and (3) are good since a context switch executed after these
events increases the probability a division by zero occurs. However, if the
program is changed by replacing (1) with if (x == 0), then event (1) becomes
bad.

Events can be naturally grouped as the set of events that access a shared
variable, or the set of events that occur at a given program location. We
will use the terms events, program locations and variables interchangeably to
denote such sets according to the context.

For each shared variable or program location, we loosely assign a probabil-
ity of whether it is as good, bad, or neutral. This assignment is done basing
on the probability that good, bad, or neutral concurrent events associated
with it are executed, assuming it is executed. Probability issues naturally
arise since the specific interleaving the scheduler chooses depends on external
and unpredicted events such as the current load of other programs running on
the underlying machine. In addition, interaction between conditional seeding
at different program locations can affect the scheduling in unpredicted ways,
justifying the above assignments of probabilities.

2.2 Scheduling heuristics

As described earlier, raceFinder uses a two-level scheme to apply noise to
the program. The first level seeds only a subset of the programs events in
order to increase the probability a bug manifest. RaceFinder further increases
the probability that the bug manifest at the second level by using scheduling
heuristics (i.e. multiple context switches and delays) over performing a single
context switch at every event of the chosen set. We motivate this using the
following example:

Thread 1 Thread 2 Thread 3

(1)If(x! = 0){ (3)z = 1; (5)z = 1;
”noise” (4)x = 0; (6)x = 1;
(2)y = 1/x;
}

In the example, a scheduling heuristic is applied after event (1) is executed.
Assume that the scheduler always first transfers control to thread 3 and once it
finishes, returns the control to thread 1 (due to a predefined JVM scheduling
policy). A single context switch after event (1) will not cause the bug to
manifest. However, seeding (1) with a long delay (e.g., using wait()) could
force the scheduler to execute thread 2 and increase the probability that the
bug appears. This example intuitively illustrates that different scheduling
heuristic can potentially increase or decrease the probability a bug manifest.
We briefly describe three possible heuristics:

• Yield() - At a chosen event, the yield() heuristic randomly determines
whether to execute the yield() primitive. This is repeated a random number

5

Eytani

of times. The yield() scheduling heuristic has the advantage that no time
out is used. If a time out is used, the CPU might be idle at times, causing
an unacceptable performance impact (see the sleep() heuristics discussed in
[5]).

• Wait() - The wait() heuristic is implemented by adding wait() statements at
chosen events during the execution of the program. To prevent a deadlock,
the thread’s waiting is timed. Locks are acquired and released before and
after the wait() primitive in order to flush values from the thread local area
and the heap. As a result, other threads see the changes that occurred to
shared variables.

• Halt one thread - An unlikely timing scenario (elaborated in [8]) occurs when
a thread halts for a long time while other threads progress and change a
shared variable value. This heuristic prevents a thread that reached a chosen
program location from advancing. Only when the rest of the program cannot
proceed and waits for this thread will the thread continue advance.

Clearly, other scheduling heuristics are possible (see [5][17] for details).
However, we believe these heuristics capture the general notion of the irregu-
larity that leads to concurrent bugs in real programs.

3 Concurrent test generation as a search problem

A search problem could be described as finding a set of parameters for which
an objective function has a maximum or a minimum. When searching opti-
mal or near optimal solutions to a problem within a large multi-modal search
space, it may be infeasible to solve analytically. Meta-heuristics algorithms
[20] are a set of techniques that are typically applied to such search spaces.
Noise-making nicely fits with this definition, as a set of competing constraints
(choosing good locations while not choosing bad locations) have to be bal-
anced. Moreover, a solution is sometimes reached using a multi-objective
function (such as a combining the configuration’s bug manifestation rate and
the configuration’s size). Previous work on noise-making shows that heuris-
tic measures can sometime be effective by narrowing down the search space,
applying noise only to shared variables that are accessed frequently [2]. For-
mulating it as a search problem allows the use search techniques (for example,
a genetic algorithm) that disregard such limiting assumptions.

Solving a search problem is associated with the three following steps: rep-
resenting the problem (a model), defining a fitness function (the objective
functions) and defining a set of manipulation operators (search operators).
In the next sub-sections we describe the notations and objective functions
required for applying meta-heuristic search to noise-making.

6

Eytani

3.1 Notations

To formulate noise-making as a search problem we define a search space over
a set of all possible multi-thread programs in Java. We denote P to be the set
of all Java programs. For each program p ∈ P we denote the following sets:

• V be the set of the program’s variables,

• SV be the set of the program variables, where each one of the program’s
variable is represented by two elements, before and after it is accessed.

• L be the set of the program’s program locations, where each one of the
program’s location is represented by two elements, before and after it is
executed.

Intuitively, this partitions the program’s events into sets that are based on
the memory locations they access at various levels of granularity (the number
of events each element represents). We differentiate the accesses to“before”and
“after”the access itself due to potentially different results obtained by applying
scheduling noise before or after these locations.

We denote the following sets:

(i) H to be a finite set of available scheduling heuristics, e.g.
H = {yield(), wait(), halt one thread} .

(ii) N to be a finite set of noise strength (probability of execution of seeded
primitives and seeded delays length): N = {0, . . . , 100}.

(iii) SL, SV and SS to be the Cartesian products of three predefined sets:

• SL = L ×H×N
• SV = V ×H×N
• SS = SV ×H×N

Each seeding element Si of the set SL (or SV and SS) intuitively represents
a scheduling heuristic of type Hi applied at location Li ∈ L (or Vi ∈ V and SVi

∈ SV). We use the terms variables to denote both variables and split access
variables (elements of SV). For sake of simplicity, we assume each heuristic
has only one associated noise strength parameter Ni ∈ N .

Definition 3.1 Configuration set C is a lattice constructed as the as the pow-
erset of the disjoint union of sets: SL, SV , SS

Each configuration Ci is a subset of seeding objects of types: SL, SV or
SV . We abuse notation and write Ci (t) to denote the number of times the
configuration Ci had been executed after t program executions, and fb (Ci) to
denote the number of times the bug manifested during the program’s execu-
tions (seeded with the configuration Ci).

7

Eytani

3.2 Objective functions

A search problem could be described as finding a set of parameters that max-
imizes a predefined objective function (or functions). An objective function
characterizes what is considered to be a good solution by imposing an ordinal
scale upon the individual solution it is applied on. At each step of the search
process the objective function allows to choose one solution from a set of two
or more solutions (configurations, for the problem at hand).

In this work, we will define two such functions: a function that maps each
configuration to a probability that the concurrent bug manifests and a function
that maps each configuration to a size representing the amount of debugging
information it provides.

Definition 3.2 For every program Pi there exists a function fp : C → [0, 1],
The function fp maps each configuration to the probability that a concurrent
bug will manifest, where seeding objects of the configuration Ci are applied
during the execution of the program.

Definition 3.3 For every program Pi there exists a function fs : C → N
(where N extends over a finite prefix of the natural numbers), The function
fs maps each configuration to a size basing the amount of scheduling noise
inserted by the configuration Ci and the way it is partitioned between the
locations. The function fs aim at concentrating a high degree of noise among
a minimal number of locations.

Clearly, other objective functions are possible. For example, a function
that maximizes the number of data races occurring over a single run or a
function that maximizes a coverage criteria (as used in [5]). A natural exten-
sion of the objective functions proposed in this work could be functions that
receive a set of configurations as their input. Such functions aim to maximize
objectives for a group of configurations (over possibly a multiply number of
executions). These functions could measure overall concurrent coverage cri-
teria [10] or collect overall statistics about the program [11]. Consider, for
example, a function that maximizes the total number of different data races
occurring for a given number of tests to be such an objective.

The computation of the function fs is given explicitly by a formula. The
function fp, however, is unknown at every single point. Thus, fp must be de-
rived by applying the Bayes rule to yield posterior probabilities using observa-
tions about the number of times a bug has manifested with each configuration
(for elaborated details see [9]). We describe the process of evaluating both
functions and details about the search operators in the next section

4 GeneticFinder

We implemented a variant of raceFinder that uses a genetic algorithm as
a search method (call geneticFinder). Details of the representation, search

8

Eytani

operators and fitness evaluation for this implementation follows.

4.1 Representation and operators

A genetic algorithm operates on a population of individuals representing pos-
sible solutions (chromosomes). These candidates, initially created randomly,
are combined and mutated to evolve into a new generation of solutions, which
may be fitter. Recombination provides a mechanism for mixing genetic mate-
rial within the population. Mutations introduce new genetic material thereby
preventing the search from stagnating. The next population of solutions is
chosen from the parent and the offspring generations in accordance with a
survival strategy that favors fit individuals.

In geneticFinder, each chromosome models one configuration using a three-
level hash table. The first level in the hash table contains the heuristic names,
used as a key to access the second level that contains, for each heuristic, the
variables and program locations noised by this heuristic. Each heuristic’s noise
parameters (for each location or variable) are found in the third hash table
level and are accessed in a similar manner.

Recombination is done by randomly choosing a pair of “parent”configurations.
Each parent contributes a random subset of its heuristics (and then a subset of
variables and program locations) to the new “offspring”configuration. When
both parents add the same heuristic and location (or variable) to the offspring,
its noise parameters are randomly chosen and bounded by the parents’ val-
ues. Mutation is preceded by choosing a subset of a heuristic’s variables or
locations and removing them from the “offspring’ configuration. This is done
to create smaller configuration that still manifest the concurrent bugs. The
“traditional”role of the mutation operator, i.e., to introduce new genetic ma-
terial, is achieved by randomly creating a number of new configurations each
generation.

4.2 Fitness evaluation

GAs success in finding an optimum solution strongly depends on the choice of a
fitness function that directs the search along promising pathways. The fitness
function is a weighted combination of objective functions and characterizes
what is considered to be a good solution. Given two possible solutions, it
determines which of them supplies a better set of desired properties. Here,
the fitness function is a mixture of the functions defined in section 3.2. In the
next paragraphs we describe how these functions are evaluated.

First, we discuss evaluation of the fs function. A desired property for a
good solution should be its ability to provide information about the causes
of the bug in source code. Intuitively, the search process can be depicted as
filtering out locations (and variables) not related to the bug until only a small
group of related locations remains. Having a high degree of noise over the
locations or variables in the remaining group usually correlates highly with

9

Eytani

source code locations related to the bug. We evaluate fs by combining two
different functions: size and entropy.

The function size aims to prefer solutions that have a small number of
“noised”locations or variables. Program locations are of smaller granularity
that variables, since each variable groups together a set program’s locations
that perform access to a memory location associated with it (for example, all
program locations accessing variable “x”). Thus we prefer solutions contain-
ing program location over solutions containing similar number of variables.
Noise is applied to each variable or program location with different probabilis-
tic strength. Hence, the function size calculates a weighted sum of the noise
strength applied to the program locations and variables. It is evaluated as fol-
lows: Let Ni,j be the value of N in the j’th seeding object of the configuration
Ci where the elements of Ci are enumerated in an arbitrary manner. Let the
function elementSize map each type seeding object to a predefined size (e.g.
1, 2 or 8 depending on the type of item j: location, split access variable or
variable respectively). The function size(Ci) is evaluated as follows:

size =

|Ci|∑
j=1

Ni,j · elementSize (Ci,j)(1)

This function maps configurations with a total high degree of noise to
higher values. Of course, such preference does accurately represent the amount
of debugging information a configuration contains (consider the cases where
no noise is applied or noise it applied to many variables). Thus, there is a
need to evaluate the way the noise is partitioned between the noised locations
and variables. Preference is given to configurations having a high degree of
noise distributed among a small number of locations (loosely similar to the
entropy measure [3]). Thus, we denote this function as entropy and evaluate
as follows:

entropy = −
|Ci|∑
j=1

Ni,j

size (Ci)
log

(
Ni,j

size (Ci)

)
(2)

The function fs is constructed as a combination of both size and entropy:

fs = size (Ci) +
1

entropy (Ci)
(3)

Integrating both functions into the fitness function leads the search process
towards selecting configurations having fewer seeded program locations with
high degree of noise applied on them.

In addition, we aim to prefer a configuration (or configurations) that man-
ifest bugs with high probability. As the scheduler is assumed deterministic, we
can assume that a given configuration (executed a sufficient number of times)
manifest the bug at a certain unknown probability. We cannot estimate this
probability before the bug actually manifests. We can, however, estimate an
upper bound on that probability during testing and evaluate the fitness ac-
cordingly (this is derived by using Bayes rule). For example, if no bug was

10

Eytani

found in the 100 first runs we assume that the probability is lower than 0.01.
Accuracy depends on the number of times a configuration has been executed
and we consider results basing on more executions to be more significant. We
evaluate fp as follows:

fp =
fb(Ci)

Ci(t)
+ log (Ci(t)) .(4)

4.3 Genetic search process

At the initialization phase of the search a random pool of configurations is cre-
ated. The search progress is measured by generations. Each generation every
configuration found in the pool is executed a predefined number of times.
After a configuration complete executing, a fitness function is calculated for
that configuration. When all configurations for a given generation have fin-
ished their execution they are sorted by their fitness level. A set of the highest
ranked configurations remain unchanged in the pool to be executed again in
the next generation. Another set, the lowest ranked configurations, is replaced
with a set of new configurations created randomly. The remaining configu-
rations form a third set. Configurations are randomly chosen from the latter
set and the set of high ranking configurations to be mated and mutated as
explained in the previous section. This process continues for a predefined
number of generations determined before the search starts.

5 Experimental Results

We experimented with programs taken from the publicly available multi-
threaded benchmark[7], containing programs with documented concurrent
bugs. Each program has different variables and program locations associ-
ated with the bug and it is necessary to apply noise only at these locations
for the bug to manifest itself. Prior knowledge of these locations is used only
to evaluate the success of the search process. The programs of the benchmark
report after each execution whether or not a bug had manifested and this
information serves as the test results. Information about the program’s vari-
ables, split access variables and program locations is collected by executing
the program a number of predefined times before the search process starts.

To demonstrate our approach we focus on one example program. We ana-
lyze this program and discuss related experimental results in details. Results
obtained from other programs we experimented with were similar.

5.1 Detailed example

We briefly describe an example program called distributive maximum. This
program outputs the maximum value of an array of integers it receives as an
input (called integersArray). The maximum is calculated in a distributive
manner using a set of threads. Each thread is associated with one cell in the

11

Eytani

array and compares the value of its associated cell to a globally shared vari-
able, containing an updated global maximum value (called globalMaximum)
found preceding to that point in program’s execution. This results in the value
of globalMaximum increasing monotonically until it reaches the maximal value
of the array. When a thread begins to run, a local thread variable is initial-
ized with the offset in the array of its associated cell (called index). During
execution, each thread reaches the following code block:

(1) If (integersArray[index] > globalMaximum)

(2) globalMaximum = integersArray[index]

The above code contains two data races related to the variable globalMax-
imum. Thus, there are two possible irregular scheduling scenarios that lead
to a bug manifesting (i.e. wrong calculation of the maximum): (a) a context
switch occurs before globalMaximum is read in (1). In this scenario the value of
globalMaximum is changed by another thread. However this change is not seen
by the first thread and once it regains control the condition of its if statement
could be incorrect. The bug occurs since the condition is not evaluated again
and consequently a wrong lower value could be written to globalMaximum(b)
a context switch occurs before globalMaximum is written in (2). In a similar
manner, once the first thread regains control, it is possible that a higher value
has already been written to globalMaximum. In this scenario globalMaximum
might be written again with an incorrect lower value. Note that it is sufficient
that either (a) or (b) occur for the bug to manifest itself.

5.2 Results and analysis

To test our approach we applied the genetic search process using different
programs from the benchmark. We present detailed results for the distributive
maximum program.

We experimented with a set of small populations (10-20 chromosomes). In
our experiments the best configurations usually alternated between applying
noise on either program location (1) or (2) (from the above code example)
and other locations and variables not related to the bug. Very high ranked
configurations (by overall fitness) usually contained significantly lower num-
ber of seeding objects. Given enough runtime (usually 20-30 minutes), the
search process converges to configurations containing only “correct”program
locations and also manifested the bug at high rate.

In the experiments we measured changes both to the value of the configu-
ration size (using the size function) and the total quality of solutions obtained
(using the fitness function) as search progresses. Progress was measured by
the number of generations passed since the start of the search. We measured
the following values for both functions:

12

Eytani

• The value of the best configuration in each generation.

• The average value of all configurations in the configurations’ pool.

• The average value of all configurations that remained unchanged in the
configurations’ pool in the past generation.

The configurations in the pool were sorted by their fitness level every gen-
eration.

We found that the results for all three groups behaved similarly. We no-
ticed that genetic search process generally progressed towards narrowing down
the number of unnecessary seeded variables and program locations. Smaller
configurations became high ranked configuration every small number of gen-
erations. The overall fitness of the solutions improved constantly until conver-
gence. Further improvement was only achieved by the GA running the same
configurations over and over again and thus increasing the level of confidence
in the probability of bug manifestation they predicted. During the run the
fitness level would sometimes decrease by a small amount due to the fact that
the number of bugs found is only an approximation of the configuration prob-
ability for finding bugs and thus it is sometimes incorrect (underestimates the
correct probability).

In early experiments the search process sometimes converged to the single
split access variable ”before globalMaximum”. Configurations containing only
the split access variable had high manifestation rate of the bug that dom-
inated the fitness calculation. To assure the search process converges into
either program locations (1) or (2) and provides more debugging informa-
tion we increased the weights of the variable and split access variable in the
elementSize function (from 1,2,4 to 1,4,8 for program locations, split access
variables and variables respectively).

To verify the fact that new configurations are created during the progress
of the genetic process we measured the age of each configuration (i.e. number
of generations since it was created). We noticed that different configurations
participated in the search process (we measured the age of the highest ranked
configuration and an average age of all configurations in the pool). After the
search process started to converge to a solution the age of the configurations
rises steadily. This behavior correlates with the fitness and size measured
results.

6 Conclusions and future work

This work proposes to reformulate random test generation of concurrent Java
programs (in the form of noise-making) as a search problem. Treating test
generations as a search problem allows applying a set of well known AI search
techniques to the input space of the generator. The search process iteratively
tunes the scheduling noise to create testing scenarios that maximize predefined
objectives functions over a single execution or possibly a group of executions.

13

Eytani

To demonstrate our approach we developed geneticFinder, a new variant
of the raceFinder tool, based on the use of genetic algorithm as the search
method. GeneticFinder aims at maximizing two predefined objective func-
tions, first achieving high probability that the bug manifests in every execu-
tion of the program and second to export high degree of debugging information
to the user. Our experimental results show this approach is effective. More-
over, our developed framework generalizes over previous works aimed achiev-
ing specific goals by providing flexibility to define various objective functions
or a weighted combination of these functions. In Addition, it could allow
in the future easy interactions with other testing tools from different testing
paradigms.

RaceFinder is an on-going research project. Further research is needed to
formulate a stop criterion for the search and improve the fitness function to
include more features. It is known that parallel execution of GA improves its
results. We plan to experiment with such implementation in the future. We
also plan to compare and combine GA with other nature inspired methods
such as particle swarm optimization and ant colony optimization.

Acknowledgments.

I thank Sadek Jbara for implementing many features in geneticFinder, and
Shlomo Berkovsky, Edward Furman, Larry Manevitz and Shmuel Ur for their
help during the preparation of this paper.

References

[1] C. Artho, K. Havelund, A. Biere. “High-level data races”. Software Testing,
Verification & Reliability 13(4): 207-227 (2003)

[2] Y. Ben-Asher, Y. Eytani, and E. Farchi, “Heuristics for Finding Concurrent
Bugs,” Workshop on Parallel and Distributed Testing and Debugging, Nice,
2003.

[3] C. E. Shannon. “A Mathematical Theory of Communication”. Bell System
Tech. J. 27(1948), 379-423, 623-659.

[4] J.D. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. “Escape Analysis
for Java”. Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), 1999.

[5] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, S. Ur. “Framework
for Testing Multi-threaded Java Programs”. Concurrency and Computation:
Practice and Experience 15(3-5): 485-499 (2003).

[6] Y. Eytani.“Efficient Framework for Finding Concurrent Bugs in Java”. Master’s
thesis. Computer Science department, University of Haifa ,Submitted.

14

Eytani

[7] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. “Toward a Framework and
Benchmark for Testing Tools for Multi-Threaded Programs”. Concurrency and
Computation: Practice & Experience, to appear.

[8] E. Farchi, Y. Nir, and S. Ur. “Concurrent Bug Patterns and How to Test Them.”
In Workshop on Parallel and Distributed Systems: Testing and Debugging, 2003.

[9] S. Fine, A. Ziv. “Coverage Directed Test Generation for Functional Verification
Using Bayesian Networks.”In proceeding of DAC, 2003

[10] S. Fine, S. Ur, A. Ziv. “Probabilistic Regression Suites for Functional
Verification.”In proceeding of DAC, 2004

[11] B. Finkbeiner, S. Sankaranarayanan and H. Sipma. “Collecting Statistics over
Runtime Executions.”In the Second Workshop on Runtime Verification (RV),
Volume 70(4), Electronic Notes in Theoretical Computer Science. Elsevier 2002.

[12] C. Flanagan and S. N. Freund. “Atomizer: A Dynamic Atomicity Checker for
Multithreaded Programs.”31st ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), Jan 2004.

[13] D.E.Goldberg, R.Burch. “Genetic Algorithms in Search, Optimization, and
Machine Learning.”AW Publ., 1989.

[14] K. Havelund. “Using Runtime Analysis to Guide Model Checking of Java
Programs”. In proceeding of SPIN, 2000.

[15] B. Long and P. A. Strooper. “A Classification of Concurrency Failures in Java
Components.” In Workshop on Parallel and Distributed Systems: Testing and
Debugging, 2003.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson. “Eraser: A
Dynamic Data Race Detector for Multithreaded Programs.”ACM Transactions
on Computer Systems, 1997.

[17] S. D. Stoller. “Testing Concurrent Java Programs Using Randomized
Scheduling.”In the Second Workshop on Runtime Verification (RV), Volume
70(4), Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[18] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda. “Model Checking
Programs.”International Journal on Robust Software Engineering 10(2), April
2003.

[19] L. Wang and S. D. Stoller. “Run-time Analysis for Atomicity.”In the Third
Workshop on Runtime Verification (RV), Volume 89(2), Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

[20] J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B.
Mitchell, S. Mancoridis, K. Rees, M. Roper and M. Shepperd. “Reformulating
Software Engineering as a Search Problem.”IEE Proceedings - Software 150(3):
161-175, 2003.

15

	Introduction
	Concurrent test generation with raceFinder
	Probabilistic models for noise-making
	Scheduling heuristics

	Concurrent test generation as a search problem
	Notations
	Objective functions

	GeneticFinder
	Representation and operators
	Fitness evaluation
	Genetic search process

	Experimental Results
	Detailed example
	Results and analysis

	Conclusions and future work
	References

